load_csr_matrix¶
- pyhelpers.store.load_csr_matrix(path_to_file, verbose=False, prt_kwargs=None, raise_error=False, **kwargs)[source]¶
Loads in a compressed sparse row (CSR) or compressed row storage (CRS).
- Parameters:
path_to_file (str | os.PathLike) – Path to the CSR file (e.g. with extension “.npz”).
verbose (bool | int) – Whether to print relevant information in console as the function runs; defaults to
False
.prt_kwargs (dict | None) – [Optional] Additional parameters for
pyhelpers.store._check_loading_path()
; defaults toNone
.raise_error (bool) – Whether to raise the provided exception; if
raise_error=False
(default), the error will be suppressed.kwargs – [Optional] Additional parameters for the function numpy.load().
- Returns:
A compressed sparse row.
- Return type:
scipy.sparse.csr.csr_matrix
Examples:
>>> from pyhelpers.store import load_csr_matrix >>> from pyhelpers.dirs import cd >>> from scipy.sparse import csr_matrix >>> data = [1, 2, 3, 4, 5, 6] >>> indices = [0, 2, 2, 0, 1, 2] >>> indptr = [0, 2, 3, 6] >>> csr_mat = csr_matrix((data, indices, indptr), shape=(3, 3)) >>> csr_mat <3x3 sparse matrix of type '<class 'numpy.int32'>' with 6 stored elements in Compressed Sparse Row format> >>> path_to_csr_npz = cd("tests", "data", "csr_mat.npz") >>> csr_mat_ = load_csr_matrix(path_to_csr_npz, verbose=True) Loading ".\tests\data\csr_mat.npz" ... Done. >>> # .nnz gets the count of explicitly-stored values (non-zeros) >>> (csr_mat != csr_mat_).count_nonzero() == 0 True >>> (csr_mat != csr_mat_).nnz == 0 True